Zeolite

Zeolites are widely used as ion-exchange beds in domestic and commercial water purification, softening, and other applications. In chemistry, zeolites are used to separate molecules (only molecules of certain sizes and shapes can pass through), and as traps for molecules so they can be analyzed. Zeolites are also widely used as catalysts and sorbents. Their well-defined pore structure and adjustable acidity make them highly active in a large variety of reactions.[9] Zeolites have the potential of providing precise and specific separation of gases including the removal of H2O, CO2 and SO2 from low-grade natural gasstreams. Other separations include noble gases, N2, O2, freon and formaldehyde. On-Board Oxygen Generating Systems (OBOGS) use zeolites in conjunction with pressure swing adsorption to remove nitrogen from compressed air in order to supply oxygen for aircrews at high altitudes

Industry[edit]

Petrochemical industry[edit]

Synthetic zeolites are widely used as catalysts in the petrochemical industry, for instance in fluid catalytic cracking and hydrocracking. Zeolites confine molecules in small spaces, which causes changes in their structure and reactivity. The hydrogen form of zeolites (prepared by ion-exchange) are powerful solid-state acids, and can facilitate a host of acid-catalyzed reactions, such as isomerisationalkylation, and cracking. The specific activation modality of most zeolitic catalysts used in petrochemical applications involves quantum-chemical Lewis acid site reactions.[citation needed]

Catalytic cracking uses reactor and a regenerator. Feed is injected onto hot, fluidized catalyst where large gasoil molecules are broken into smaller gasoline molecules and olefins. The vapor-phase products are separated from the catalyst and distilled into various products. The catalyst is circulated to a regenerator where air is used to burn coke off the surface of the catalyst that was formed as a byproduct in the cracking process. The hot regenerated catalyst is then circulated back to the reactor to complete its cycle.

Nuclear industry[edit]

Zeolites have uses in advanced reprocessing methods, where their micro-porous ability to capture some ions while allowing others to pass freely, allowing many fission products to be efficiently removed from nuclear waste and permanently trapped. Equally important are the mineral properties of zeolites. Their alumino-silicate construction is extremely durable and resistant to radiation even in porous form. Additionally, once they are loaded with trapped fission products, the zeolite-waste combination can be hot pressed into an extremely durable ceramic form, closing the pores and trapping the waste in a solid stone block. This is a waste form factor that greatly reduces its hazard compared to conventional reprocessing systems. Zeolites are also used in the management of leaks of radioactive materials. For example, in the aftermath of the Fukushima Daiichi nuclear disaster, sandbags of zeolite were dropped into the seawater near the power plant to adsorb radioactive caesium which was present in high levels.[11]

Biogas Industry[edit]

The German group Fraunhofer e.V. announced that they had developed a zeolite substance for use in the biogas industry for long-term storage of energy at a density 4x more than water.[12] Ultimately, the goal is to be able to store heat both in industrial installations and in small combined heat and power plants such as those used in larger residential buildings.

Commercial and domestic[edit]

Heating and refrigeration[edit]

Zeolites can be used as solar thermal collectors and for adsorption refrigeration. In these applications, their high heat of adsorption and ability to hydrate and dehydrate while maintaining structural stability is exploited. This hygroscopic property coupled with an inherent exothermic (energy releasing) reaction when transitioning from a dehydrated to a hydrated form make natural zeolites useful in harvesting waste heat and solar heat energy. Zeolites are also used as amolecular sieve in cryosorption style vacuum pumps.[13]

Detergents[edit]

The largest single use for zeolite is the global laundry detergent market. This amounted to 1.44 million metric tons per year of anhydrous zeolite A in 1992.[citation needed]

Cat litter[edit]

Non-clumping cat litter is often made of zeolite or diatomite.

Construction[edit]

Synthetic zeolites are used as an additive in the production process of warm mix asphalt concrete. The development of this application started in Germany in the 1990s. They help by decreasing the temperature level during manufacture and laying of asphalt concrete, resulting in lower consumption of fossil fuels, thus releasing less carbon dioxide, aerosols, and vapours. The use of synthetic zeolites in hot mixed asphalt leads to easier compaction and, to a certain degree, allows cold weather paving and longer hauls.

When added to Portland cement as a pozzolan they can reduce chloride permeability and improve workability. They reduce weight and help moderate water content while allowing for slower drying which improves break strength.[14] When added to lime mortars and lime-metakaolin mortars, synthetic zeolite pellets can act simultaneously as pozzolanic material and water reservoir.[15][16]

Gemstones[edit]

Thomsonites, one of the rarer zeolite minerals, have been collected as gemstones from a series of lava flows along Lake Superior in Minnesota and to a lesser degree in Michigan, U.S.A. Thomsonite nodules from these areas have eroded frombasalt lava flows and are collected on beaches and by scuba divers in Lake Superior.

These thomsonite nodules have concentric rings in combinations of colors: black, white, orange, pink, purple, red, and many shades of green. Some nodules have copper inclusions and rarely will be found with copper "eyes." When polished by a lapidarythe thomsonites sometimes display a "cat's eye" effect (chatoyancy).[17]

Biological[edit]

Medical[edit]

Research into and development of the many biochemical and biomedical applications of zeolites, particularly the naturally occurring species heulandite,clinoptilolite and chabazite has been ongoing.[18]

Zeolite-based oxygen concentrator systems are widely used to produce medical-grade oxygen. The zeolite is used as a molecular sieve to create purified oxygen from air using its ability to trap impurities, in a process involving the adsorption of nitrogen, leaving highly purified oxygen and up to 5% argon.

QuikClot brand hemostatic agent, which is used to stop severe bleeding,[19] contains a calcium-loaded form of zeolite found in kaolin clay.[20]

Agriculture[edit]

In agriculture, clinoptilolite (a naturally occurring zeolite) is used as a soil treatment. It provides a source of slowly released potassium. If previously loaded with ammonium, the zeolite can serve a similar function in the slow release of nitrogen. Zeolites can also act as water moderators, in which they will absorb up to 55% of their weight in water and slowly release it under the plant's demand. This property can prevent root rot and moderate drought cycles. Clinoptilolite has also been added to chicken food, the absorption of water and ammonia by the zeolite made the birds droppings drier, less odoriferous and hence easier to handle.[21]

Aquarium keeping[edit]

Zeolites are marketed by pet stores for use as a filter additive in aquariums.[8] In aquariums, zeolites can be used to adsorb ammonia and other nitrogenous compounds. However, due to the high affinity of some zeolites for calcium, they may be less effective in hard water and may deplete calcium. Zeolite filtration is used in some marine aquaria to keep nutrient concentrations low for the benefit of corals adapted to nutrient-depleted waters.

Where and how the zeolite was formed is an important consideration for aquariums. Most Northern hemisphere natural zeolites were formed when molten lava came in contact with sea water, thereby 'loading' the zeolite with Na (sodium) sacrificial ions. The mechanism is well known to chemists as ion exchange. These sodium ions will speciate with other ions in solution, thus the takeup of nitrogen in ammonia, with the release of the sodium. One deposit in southern Idaho near Bear River is a fresh water variety (Na<.05%). Southern hemisphere zeolites are typically formed in freshwater and have a high calcium content.[citation needed]

Zeolite is an effective ammonia filter, but must be used with some care, especially with delicate tropical corals that are sensitive to water chemistry and temperature.

Industry[edit]

Petrochemical industry[edit]

Synthetic zeolites are widely used as catalysts in the petrochemical industry, for instance in fluid catalytic cracking and hydrocracking. Zeolites confine molecules in small spaces, which causes changes in their structure and reactivity. The hydrogen form of zeolites (prepared by ion-exchange) are powerful solid-state acids, and can facilitate a host of acid-catalyzed reactions, such as isomerisationalkylation, and cracking. The specific activation modality of most zeolitic catalysts used in petrochemical applications involves quantum-chemical Lewis acid site reactions.[citation needed]

Catalytic cracking uses reactor and a regenerator. Feed is injected onto hot, fluidized catalyst where large gasoil molecules are broken into smaller gasoline molecules and olefins. The vapor-phase products are separated from the catalyst and distilled into various products. The catalyst is circulated to a regenerator where air is used to burn coke off the surface of the catalyst that was formed as a byproduct in the cracking process. The hot regenerated catalyst is then circulated back to the reactor to complete its cycle.

Nuclear industry[edit]

Zeolites have uses in advanced reprocessing methods, where their micro-porous ability to capture some ions while allowing others to pass freely, allowing many fission products to be efficiently removed from nuclear waste and permanently trapped. Equally important are the mineral properties of zeolites. Their alumino-silicate construction is extremely durable and resistant to radiation even in porous form. Additionally, once they are loaded with trapped fission products, the zeolite-waste combination can be hot pressed into an extremely durable ceramic form, closing the pores and trapping the waste in a solid stone block. This is a waste form factor that greatly reduces its hazard compared to conventional reprocessing systems. Zeolites are also used in the management of leaks of radioactive materials. For example, in the aftermath of the Fukushima Daiichi nuclear disaster, sandbags of zeolite were dropped into the seawater near the power plant to adsorb radioactive caesium which was present in high levels.[11]

Biogas Industry[edit]

The German group Fraunhofer e.V. announced that they had developed a zeolite substance for use in the biogas industry for long-term storage of energy at a density 4x more than water.[12] Ultimately, the goal is to be able to store heat both in industrial installations and in small combined heat and power plants such as those used in larger residential buildings.

Commercial and domestic[edit]

Heating and refrigeration[edit]

Zeolites can be used as solar thermal collectors and for adsorption refrigeration. In these applications, their high heat of adsorption and ability to hydrate and dehydrate while maintaining structural stability is exploited. This hygroscopic property coupled with an inherent exothermic (energy releasing) reaction when transitioning from a dehydrated to a hydrated form make natural zeolites useful in harvesting waste heat and solar heat energy. Zeolites are also used as amolecular sieve in cryosorption style vacuum pumps.[13]

Detergents[edit]

The largest single use for zeolite is the global laundry detergent market. This amounted to 1.44 million metric tons per year of anhydrous zeolite A in 1992.[citation needed]

Cat litter[edit]

Non-clumping cat litter is often made of zeolite or diatomite.

Construction[edit]

Synthetic zeolites are used as an additive in the production process of warm mix asphalt concrete. The development of this application started in Germany in the 1990s. They help by decreasing the temperature level during manufacture and laying of asphalt concrete, resulting in lower consumption of fossil fuels, thus releasing less carbon dioxide, aerosols, and vapours. The use of synthetic zeolites in hot mixed asphalt leads to easier compaction and, to a certain degree, allows cold weather paving and longer hauls.

When added to Portland cement as a pozzolan they can reduce chloride permeability and improve workability. They reduce weight and help moderate water content while allowing for slower drying which improves break strength.[14] When added to lime mortars and lime-metakaolin mortars, synthetic zeolite pellets can act simultaneously as pozzolanic material and water reservoir.[15][16]

Gemstones[edit]

Thomsonites, one of the rarer zeolite minerals, have been collected as gemstones from a series of lava flows along Lake Superior in Minnesota and to a lesser degree in Michigan, U.S.A. Thomsonite nodules from these areas have eroded frombasalt lava flows and are collected on beaches and by scuba divers in Lake Superior.

These thomsonite nodules have concentric rings in combinations of colors: black, white, orange, pink, purple, red, and many shades of green. Some nodules have copper inclusions and rarely will be found with copper "eyes." When polished by a lapidarythe thomsonites sometimes display a "cat's eye" effect (chatoyancy).[17]

Biological[edit]

Medical[edit]

Research into and development of the many biochemical and biomedical applications of zeolites, particularly the naturally occurring species heulandite,clinoptilolite and chabazite has been ongoing.[18]

Zeolite-based oxygen concentrator systems are widely used to produce medical-grade oxygen. The zeolite is used as a molecular sieve to create purified oxygen from air using its ability to trap impurities, in a process involving the adsorption of nitrogen, leaving highly purified oxygen and up to 5% argon.

QuikClot brand hemostatic agent, which is used to stop severe bleeding,[19] contains a calcium-loaded form of zeolite found in kaolin clay.[20]

Agriculture[edit]

In agriculture, clinoptilolite (a naturally occurring zeolite) is used as a soil treatment. It provides a source of slowly released potassium. If previously loaded with ammonium, the zeolite can serve a similar function in the slow release of nitrogen. Zeolites can also act as water moderators, in which they will absorb up to 55% of their weight in water and slowly release it under the plant's demand. This property can prevent root rot and moderate drought cycles. Clinoptilolite has also been added to chicken food, the absorption of water and ammonia by the zeolite made the birds droppings drier, less odoriferous and hence easier to handle.[21]

Aquarium keeping[edit]

Zeolites are marketed by pet stores for use as a filter additive in aquariums.[8] In aquariums, zeolites can be used to adsorb ammonia and other nitrogenous compounds. However, due to the high affinity of some zeolites for calcium, they may be less effective in hard water and may deplete calcium. Zeolite filtration is used in some marine aquaria to keep nutrient concentrations low for the benefit of corals adapted to nutrient-depleted waters.

Where and how the zeolite was formed is an important consideration for aquariums. Most Northern hemisphere natural zeolites were formed when molten lava came in contact with sea water, thereby 'loading' the zeolite with Na (sodium) sacrificial ions. The mechanism is well known to chemists as ion exchange. These sodium ions will speciate with other ions in solution, thus the takeup of nitrogen in ammonia, with the release of the sodium. One deposit in southern Idaho near Bear River is a fresh water variety (Na<.05%). Southern hemisphere zeolites are typically formed in freshwater and have a high calcium content.[citation needed]

Zeolite is an effective ammonia filter, but must be used with some care, especially with delicate tropical corals that are sensitive to water chemistry and temperature.